Intel® PyTorch*扩展
创建于:2025 年 4 月 1 日 | 最后更新:2025 年 4 月 1 日 | 最后验证:2024 年 11 月 5 日
英特尔® PyTorch* 扩展通过最新的功能优化扩展了 PyTorch*,在英特尔硬件上提供额外的性能提升。优化利用了英特尔 CPU 上的 AVX-512 向量神经网络指令(AVX-512 VNNI)和英特尔® 高级矩阵扩展(英特尔® AMX),以及英特尔 X e 矩阵扩展(XMX)AI 引擎在英特尔独立 GPU 上的功能。此外,通过 PyTorch* xpu 设备,英特尔® PyTorch* 扩展为英特尔独立 GPU 提供了 PyTorch* 的简单 GPU 加速。
英特尔® PyTorch* 已作为开源项目发布在 Github 上。
CPU 的源代码可在主分支获取。
GPU 源代码可在 xpu-main 分支找到。
特性 §
Intel® PyTorch*扩展与 CPU 和 GPU 共享大多数功能。
易用性 Python API:Intel® PyTorch*扩展为用户提供简单的 Python 前端 API 和工具,用户可以通过少量代码更改获得性能优化,如图优化和算子优化。通常,只需在原始代码中添加 2 到 3 个条款即可。
Channels Last:与默认的 NCHW 内存格式相比,channels_last(NHWC)内存格式可以进一步加速卷积神经网络。在 Intel® Extension for PyTorch*中,NHWC 内存格式已为大多数关键 CPU 算子启用,尽管它们尚未全部合并到 PyTorch 主分支中。预计它们将很快完全集成到 PyTorch 上游。
自动混合精度(AMP):BFloat16 低精度数据类型已在第三代 Xeon 可扩展服务器(即 Cooper Lake)上原生支持,并将在具有 Intel®高级矩阵扩展(Intel® AMX)指令集的下一代 Intel® Xeon®可扩展处理器上得到支持,性能将进一步提升。Intel® Extension for PyTorch*中已大量启用对 CPU 的 BFloat16 自动混合精度(AMP)支持和算子的 BFloat16 优化,并部分集成到 PyTorch 主分支中。大多数这些优化将通过正在提交和审查的 PR 集成到 PyTorch 主分支中。已为 Intel 离散 GPU 启用了 BFloat16 和 Float16 的自动混合精度(AMP)。
图优化:为了进一步优化 torchscript 的性能,Intel® Extension for PyTorch*支持融合常用的操作模式,如 Conv2D+ReLU、Linear+ReLU 等。融合的好处以透明的方式传递给用户。支持的详细融合模式可以在此处找到。随着 oneDNN Graph API 的引入,图优化将集成到 PyTorch 中。
操作优化:Intel® Extension for PyTorch*还优化了操作,并实现了几个定制的操作以提高性能。通过 ATen 注册机制,Intel® Extension for PyTorch*用其优化的对应操作替换了几个 ATen 操作。此外,还实现了几个针对几个流行拓扑的定制操作。例如,ROIAlign 和 NMS 在 Mask R-CNN 中被定义。为了提高这些拓扑的性能,Intel® Extension for PyTorch*还优化了这些定制操作。
入门指南
需要对用户进行一些小的代码修改,以便他们能够开始使用 Intel® Extension for PyTorch*。支持 PyTorch 的命令式模式和 TorchScript 模式。本节介绍了 Intel® Extension for PyTorch* API 函数在命令式模式和 TorchScript 模式下的使用,涵盖了 Float32 和 BFloat16 数据类型。最后还将介绍 C++的使用。
您只需导入 Intel® Extension for PyTorch*包,并将优化函数应用于模型对象。如果是训练工作负载,还需要将优化函数应用于优化器对象。
对于使用 BFloat16 数据类型的训练和推理,PyTorch 上游已经启用了 torch.cpu.amp 以支持混合精度,方便使用。PyTorch 上游和 Intel® Extension for PyTorch*中已经过度启用了 CPU 算子对 BFloat16 数据类型。同时,由 Intel® Extension for PyTorch*注册的 torch.xpu.amp 使得在 Intel 离散 GPU 上使用 BFloat16 和 Float16 数据类型变得简单。torch.cpu.amp 或 torch.xpu.amp 会自动将每个算子与其适当的数据类型匹配,并返回最佳性能。
示例 – CPU §
本节展示了使用英特尔® PyTorch* 扩展在 CPU 上的训练和推理示例
突出了对英特尔® PyTorch* 所需的代码更改
训练 ¶
Float32(浮点 32 位)
import torch
import torchvision
import intel_extension_for_pytorch as ipex
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=128
)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
model, optimizer = ipex.optimize(model, optimizer=optimizer)
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print(batch_idx)
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, 'checkpoint.pth')
BFloat16(BFloat16)
import torch
import torchvision
import intel_extension_for_pytorch as ipex
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=128
)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
with torch.cpu.amp.autocast():
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print(batch_idx)
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, 'checkpoint.pth')
推理 - 强制模式
Float32(浮点 32 位)
import torch
import torchvision.models as models
model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)
#################### code changes ####################
import intel_extension_for_pytorch as ipex
model = ipex.optimize(model)
######################################################
with torch.no_grad():
model(data)
BFloat16
import torch
from transformers import BertModel
model = BertModel.from_pretrained(args.model_name)
model.eval()
vocab_size = model.config.vocab_size
batch_size = 1
seq_length = 512
data = torch.randint(vocab_size, size=[batch_size, seq_length])
#################### code changes ####################
import intel_extension_for_pytorch as ipex
model = ipex.optimize(model, dtype=torch.bfloat16)
######################################################
with torch.no_grad():
with torch.cpu.amp.autocast():
model(data)
推理 - TorchScript 模式
TorchScript 模式使得图优化成为可能,因此提高了某些拓扑结构的性能。Intel® 对 PyTorch* 的扩展实现了大多数常用操作符模式融合,用户无需额外代码更改即可获得性能提升。
Float32
import torch
import torchvision.models as models
model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)
#################### code changes ####################
import intel_extension_for_pytorch as ipex
model = ipex.optimize(model)
######################################################
with torch.no_grad():
d = torch.rand(1, 3, 224, 224)
model = torch.jit.trace(model, d)
model = torch.jit.freeze(model)
model(data)
BFloat16
import torch
from transformers import BertModel
model = BertModel.from_pretrained(args.model_name)
model.eval()
vocab_size = model.config.vocab_size
batch_size = 1
seq_length = 512
data = torch.randint(vocab_size, size=[batch_size, seq_length])
#################### code changes ####################
import intel_extension_for_pytorch as ipex
model = ipex.optimize(model, dtype=torch.bfloat16)
######################################################
with torch.no_grad():
with torch.cpu.amp.autocast():
d = torch.randint(vocab_size, size=[batch_size, seq_length])
model = torch.jit.trace(model, (d,), check_trace=False, strict=False)
model = torch.jit.freeze(model)
model(data)
沉浸式翻译 – GPU
本节展示了使用英特尔® PyTorch* 扩展在 GPU 上进行训练和推理的示例
需要为英特尔® PyTorch* 扩展进行的代码更改已在上方行中的注释中突出显示
训练 ¶
Float32
import torch
import torchvision
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=128
)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
#################################### code changes ################################
model = model.to("xpu")
model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.float32)
#################################### code changes ################################
for batch_idx, (data, target) in enumerate(train_loader):
########## code changes ##########
data = data.to("xpu")
target = target.to("xpu")
########## code changes ##########
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print(batch_idx)
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, 'checkpoint.pth')
BFloat16
import torch
import torchvision
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(
root=DATA,
train=True,
transform=transform,
download=DOWNLOAD,
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=128
)
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
##################################### code changes ################################
model = model.to("xpu")
model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)
##################################### code changes ################################
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
######################### code changes #########################
data = data.to("xpu")
target = target.to("xpu")
with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
######################### code changes #########################
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print(batch_idx)
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, 'checkpoint.pth')
推理 - 强制模式
Float32(浮点 32 位)
import torch
import torchvision.models as models
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############
model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)
model = model.to(memory_format=torch.channels_last)
data = data.to(memory_format=torch.channels_last)
#################### code changes ################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.float32)
#################### code changes ################
with torch.no_grad():
model(data)
BFloat16(半精度浮点 16 位)
import torch
import torchvision.models as models
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############
model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)
model = model.to(memory_format=torch.channels_last)
data = data.to(memory_format=torch.channels_last)
#################### code changes #################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.bfloat16)
#################### code changes #################
with torch.no_grad():
################################# code changes ######################################
with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=False):
################################# code changes ######################################
model(data)
Float16(浮点 16 位)
import torch
import torchvision.models as models
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############
model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)
model = model.to(memory_format=torch.channels_last)
data = data.to(memory_format=torch.channels_last)
#################### code changes ################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.float16)
#################### code changes ################
with torch.no_grad():
################################# code changes ######################################
with torch.xpu.amp.autocast(enabled=True, dtype=torch.float16, cache_enabled=False):
################################# code changes ######################################
model(data)
推理 - TorchScript 模式
TorchScript 模式使得图优化成为可能,因此提高了某些拓扑结构的性能。Intel® 对 PyTorch* 的扩展实现了大多数常用操作符模式融合,用户无需额外代码更改即可获得性能提升。
Float32(浮点 32 位)
import torch
from transformers import BertModel
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############
model = BertModel.from_pretrained(args.model_name)
model.eval()
vocab_size = model.config.vocab_size
batch_size = 1
seq_length = 512
data = torch.randint(vocab_size, size=[batch_size, seq_length])
#################### code changes ################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.float32)
#################### code changes ################
with torch.no_grad():
d = torch.randint(vocab_size, size=[batch_size, seq_length])
##### code changes #####
d = d.to("xpu")
##### code changes #####
model = torch.jit.trace(model, (d,), check_trace=False, strict=False)
model = torch.jit.freeze(model)
model(data)
BFloat16(BFloat16 位)
import torch
from transformers import BertModel
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############
model = BertModel.from_pretrained(args.model_name)
model.eval()
vocab_size = model.config.vocab_size
batch_size = 1
seq_length = 512
data = torch.randint(vocab_size, size=[batch_size, seq_length])
#################### code changes #################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.bfloat16)
#################### code changes #################
with torch.no_grad():
d = torch.randint(vocab_size, size=[batch_size, seq_length])
################################# code changes ######################################
d = d.to("xpu")
with torch.xpu.amp.autocast(enabled=True, dtype=torch.bfloat16, cache_enabled=False):
################################# code changes ######################################
model = torch.jit.trace(model, (d,), check_trace=False, strict=False)
model = torch.jit.freeze(model)
model(data)
Float16(浮点 16 位)
import torch
from transformers import BertModel
############# code changes ###############
import intel_extension_for_pytorch as ipex
############# code changes ###############
model = BertModel.from_pretrained(args.model_name)
model.eval()
vocab_size = model.config.vocab_size
batch_size = 1
seq_length = 512
data = torch.randint(vocab_size, size=[batch_size, seq_length])
#################### code changes ################
model = model.to("xpu")
data = data.to("xpu")
model = ipex.optimize(model, dtype=torch.float16)
#################### code changes ################
with torch.no_grad():
d = torch.randint(vocab_size, size=[batch_size, seq_length])
################################# code changes ######################################
d = d.to("xpu")
with torch.xpu.amp.autocast(enabled=True, dtype=torch.float16, cache_enabled=False):
################################# code changes ######################################
model = torch.jit.trace(model, (d,), check_trace=False, strict=False)
model = torch.jit.freeze(model)
model(data)
C++(仅 CPU)
要与 libtorch(PyTorch 的 C++库)以及 Intel® Extension for PyTorch*一起工作,它也提供了其 C++动态库。该 C++库仅用于处理推理工作负载,例如服务部署。对于常规开发,请使用 Python 接口。与 libtorch 的使用相比,无需进行特定的代码更改,只需将输入数据转换为通道最后的数据格式即可。编译应遵循推荐的 CMake 方法。详细说明可以在 PyTorch 教程中找到。在编译过程中,一旦链接了 Intel® Extension for PyTorch*的 C++动态库,Intel 优化将自动激活。
example-app.cpp
#include <torch/script.h>
#include <iostream>
#include <memory>
int main(int argc, const char* argv[]) {
torch::jit::script::Module module;
try {
module = torch::jit::load(argv[1]);
}
catch (const c10::Error& e) {
std::cerr << "error loading the model\n";
return -1;
}
std::vector<torch::jit::IValue> inputs;
// make sure input data are converted to channels last format
inputs.push_back(torch::ones({1, 3, 224, 224}).to(c10::MemoryFormat::ChannelsLast));
at::Tensor output = module.forward(inputs).toTensor();
return 0;
}
CMakeLists.txt
cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(example-app)
find_package(intel_ext_pt_cpu REQUIRED)
add_executable(example-app example-app.cpp)
target_link_libraries(example-app "${TORCH_LIBRARIES}")
set_property(TARGET example-app PROPERTY CXX_STANDARD 14)
编译命令
$ cmake -DCMAKE_PREFIX_PATH=<LIBPYTORCH_PATH> ..
$ make
如果显示 INTEL_EXT_PT_CPU 为 TRUE,则表示扩展已链接到二进制文件中。这可以通过 Linux 命令 ldd 进行验证。
$ cmake -DCMAKE_PREFIX_PATH=/workspace/libtorch ..
-- The C compiler identification is GNU 9.3.0
-- The CXX compiler identification is GNU 9.3.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Looking for pthread.h
-- Looking for pthread.h - found
-- Performing Test CMAKE_HAVE_LIBC_PTHREAD
-- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed
-- Looking for pthread_create in pthreads
-- Looking for pthread_create in pthreads - not found
-- Looking for pthread_create in pthread
-- Looking for pthread_create in pthread - found
-- Found Threads: TRUE
-- Found Torch: /workspace/libtorch/lib/libtorch.so
-- Found INTEL_EXT_PT_CPU: TRUE
-- Configuring done
-- Generating done
-- Build files have been written to: /workspace/build
$ ldd example-app
...
libtorch.so => /workspace/libtorch/lib/libtorch.so (0x00007f3cf98e0000)
libc10.so => /workspace/libtorch/lib/libc10.so (0x00007f3cf985a000)
libintel-ext-pt-cpu.so => /workspace/libtorch/lib/libintel-ext-pt-cpu.so (0x00007f3cf70fc000)
libtorch_cpu.so => /workspace/libtorch/lib/libtorch_cpu.so (0x00007f3ce16ac000)
...
libdnnl_graph.so.0 => /workspace/libtorch/lib/libdnnl_graph.so.0 (0x00007f3cde954000)
...
模型库(仅 CPU)
已由英特尔工程师优化的用例可在 Intel® 架构模型库中找到(分支名称格式为 pytorch-r<版本>-models)。许多用于基准测试的 PyTorch 用例也可在 GitHub 页面找到。您只需在模型库中运行脚本即可获得即时的性能提升。