备注
点击此处下载完整示例代码
使用自定义函数融合卷积和批量归一化 ¶
创建于:2025 年 4 月 1 日 | 最后更新:2025 年 4 月 1 日 | 最后验证:2024 年 11 月 5 日
将相邻的卷积和批量归一化层融合在一起通常是推理时的优化,以提高运行时性能。这通常是通过完全消除批量归一化层并更新前面卷积的权重和偏置来实现的 [0]。然而,这种技术不适用于训练模型。
在本教程中,我们将展示一种不同的融合两层的技术,该技术可以在训练过程中应用。与改进运行时间不同,此优化的目标是减少内存使用。
这种优化的想法是看到卷积和批量归一化(以及许多其他操作)需要在正向传播期间保存其输入以供反向传播使用。对于大批量的情况,这些保存的输入是您内存使用的主要部分,因此能够避免为每个卷积批量归一化对分配另一个输入张量可以显著减少内存占用。
在本教程中,我们通过将卷积和批量归一化合并为单个层(作为一个自定义函数)来避免这种额外的分配。在这个组合层的正向传播中,我们像平常一样执行正常的卷积和批量归一化,唯一的区别是我们将只保存卷积的输入。为了获得批量归一化的输入,这是反向传播所必需的,我们在反向传播期间再次重新计算卷积正向传播。
注意,这种优化的使用是情境性的。虽然(通过避免保存一个缓冲区)我们总是在前向传递结束时减少了分配的内存,但在某些情况下,分配的峰值内存可能实际上并没有减少。更多细节请参见最后一节。
为了简单起见,在本教程中,我们为 Conv2D 硬编码 bias=False、stride=1、padding=0、dilation=1 和 groups=1。对于 BatchNorm2D,我们硬编码 eps=1e-3、momentum=0.1、affine=False 和 track_running_statistics=False。另一个小的不同之处在于,我们在计算批归一化时,在平方根外部将 epsilon 添加到分母中。
[0] https://nenadmarkus.com/p/fusing-batchnorm-and-conv/
卷积的反向公式实现
实现自定义函数需要我们自行实现反向传播。在这种情况下,我们需要 Conv2D 和 BatchNorm2D 的反向传播公式。最终我们将它们链接到我们的统一反向传播函数中,但下面我们首先将它们实现为各自的自定义函数,以便我们可以单独验证它们的正确性。
import torch
from torch.autograd.function import once_differentiable
import torch.nn.functional as F
def convolution_backward(grad_out, X, weight):
grad_input = F.conv2d(X.transpose(0, 1), grad_out.transpose(0, 1)).transpose(0, 1)
grad_X = F.conv_transpose2d(grad_out, weight)
return grad_X, grad_input
class Conv2D(torch.autograd.Function):
@staticmethod
def forward(ctx, X, weight):
ctx.save_for_backward(X, weight)
return F.conv2d(X, weight)
# Use @once_differentiable by default unless we intend to double backward
@staticmethod
@once_differentiable
def backward(ctx, grad_out):
X, weight = ctx.saved_tensors
return convolution_backward(grad_out, X, weight)
当使用 gradcheck
测试时,使用双精度非常重要。
weight = torch.rand(5, 3, 3, 3, requires_grad=True, dtype=torch.double)
X = torch.rand(10, 3, 7, 7, requires_grad=True, dtype=torch.double)
torch.autograd.gradcheck(Conv2D.apply, (X, weight))
批归一化的反向传播公式实现
批归一化有两种模式:训练模式和 eval
模式。在训练模式下,样本统计量是输入的函数。在 eval
模式下,我们使用保存的运行统计量,这些统计量不是输入的函数。这使得非训练模式下的反向传播显著简化。下面我们仅实现和测试训练模式的情况。
def unsqueeze_all(t):
# Helper function to ``unsqueeze`` all the dimensions that we reduce over
return t[None, :, None, None]
def batch_norm_backward(grad_out, X, sum, sqrt_var, N, eps):
# We use the formula: ``out = (X - mean(X)) / (sqrt(var(X)) + eps)``
# in batch norm 2D forward. To simplify our derivation, we follow the
# chain rule and compute the gradients as follows before accumulating
# them all into a final grad_input.
# 1) ``grad of out wrt var(X)`` * ``grad of var(X) wrt X``
# 2) ``grad of out wrt mean(X)`` * ``grad of mean(X) wrt X``
# 3) ``grad of out wrt X in the numerator`` * ``grad of X wrt X``
# We then rewrite the formulas to use as few extra buffers as possible
tmp = ((X - unsqueeze_all(sum) / N) * grad_out).sum(dim=(0, 2, 3))
tmp *= -1
d_denom = tmp / (sqrt_var + eps)**2 # ``d_denom = -num / denom**2``
# It is useful to delete tensors when you no longer need them with ``del``
# For example, we could've done ``del tmp`` here because we won't use it later
# In this case, it's not a big difference because ``tmp`` only has size of (C,)
# The important thing is avoid allocating NCHW-sized tensors unnecessarily
d_var = d_denom / (2 * sqrt_var) # ``denom = torch.sqrt(var) + eps``
# Compute ``d_mean_dx`` before allocating the final NCHW-sized grad_input buffer
d_mean_dx = grad_out / unsqueeze_all(sqrt_var + eps)
d_mean_dx = unsqueeze_all(-d_mean_dx.sum(dim=(0, 2, 3)) / N)
# ``d_mean_dx`` has already been reassigned to a C-sized buffer so no need to worry
# ``(1) unbiased_var(x) = ((X - unsqueeze_all(mean))**2).sum(dim=(0, 2, 3)) / (N - 1)``
grad_input = X * unsqueeze_all(d_var * N)
grad_input += unsqueeze_all(-d_var * sum)
grad_input *= 2 / ((N - 1) * N)
# (2) mean (see above)
grad_input += d_mean_dx
# (3) Add 'grad_out / <factor>' without allocating an extra buffer
grad_input *= unsqueeze_all(sqrt_var + eps)
grad_input += grad_out
grad_input /= unsqueeze_all(sqrt_var + eps) # ``sqrt_var + eps > 0!``
return grad_input
class BatchNorm(torch.autograd.Function):
@staticmethod
def forward(ctx, X, eps=1e-3):
# Don't save ``keepdim`` values for backward
sum = X.sum(dim=(0, 2, 3))
var = X.var(unbiased=True, dim=(0, 2, 3))
N = X.numel() / X.size(1)
sqrt_var = torch.sqrt(var)
ctx.save_for_backward(X)
ctx.eps = eps
ctx.sum = sum
ctx.N = N
ctx.sqrt_var = sqrt_var
mean = sum / N
denom = sqrt_var + eps
out = X - unsqueeze_all(mean)
out /= unsqueeze_all(denom)
return out
@staticmethod
@once_differentiable
def backward(ctx, grad_out):
X, = ctx.saved_tensors
return batch_norm_backward(grad_out, X, ctx.sum, ctx.sqrt_var, ctx.N, ctx.eps)
使用 gradcheck
进行测试
a = torch.rand(1, 2, 3, 4, requires_grad=True, dtype=torch.double)
torch.autograd.gradcheck(BatchNorm.apply, (a,), fast_mode=False)
融合卷积和批归一化
由于大部分工作已经完成,我们可以将它们结合起来。注意在(1)中我们只为反向传播保存一个缓冲区,但这也意味着我们在(5)中重新计算卷积正向。同时请注意,在(2)、(3)、(4)和(6)中,代码与上面的示例完全相同。
class FusedConvBN2DFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, X, conv_weight, eps=1e-3):
assert X.ndim == 4 # N, C, H, W
# (1) Only need to save this single buffer for backward!
ctx.save_for_backward(X, conv_weight)
# (2) Exact same Conv2D forward from example above
X = F.conv2d(X, conv_weight)
# (3) Exact same BatchNorm2D forward from example above
sum = X.sum(dim=(0, 2, 3))
var = X.var(unbiased=True, dim=(0, 2, 3))
N = X.numel() / X.size(1)
sqrt_var = torch.sqrt(var)
ctx.eps = eps
ctx.sum = sum
ctx.N = N
ctx.sqrt_var = sqrt_var
mean = sum / N
denom = sqrt_var + eps
# Try to do as many things in-place as possible
# Instead of `out = (X - a) / b`, doing `out = X - a; out /= b`
# avoids allocating one extra NCHW-sized buffer here
out = X - unsqueeze_all(mean)
out /= unsqueeze_all(denom)
return out
@staticmethod
def backward(ctx, grad_out):
X, conv_weight, = ctx.saved_tensors
# (4) Batch norm backward
# (5) We need to recompute conv
X_conv_out = F.conv2d(X, conv_weight)
grad_out = batch_norm_backward(grad_out, X_conv_out, ctx.sum, ctx.sqrt_var,
ctx.N, ctx.eps)
# (6) Conv2d backward
grad_X, grad_input = convolution_backward(grad_out, X, conv_weight)
return grad_X, grad_input, None, None, None, None, None
下一步是将我们的函数变体包装在状态化 nn.Module 中
import torch.nn as nn
import math
class FusedConvBN(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, exp_avg_factor=0.1,
eps=1e-3, device=None, dtype=None):
super(FusedConvBN, self).__init__()
factory_kwargs = {'device': device, 'dtype': dtype}
# Conv parameters
weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
self.conv_weight = nn.Parameter(torch.empty(*weight_shape, **factory_kwargs))
# Batch norm parameters
num_features = out_channels
self.num_features = num_features
self.eps = eps
# Initialize
self.reset_parameters()
def forward(self, X):
return FusedConvBN2DFunction.apply(X, self.conv_weight, self.eps)
def reset_parameters(self) -> None:
nn.init.kaiming_uniform_(self.conv_weight, a=math.sqrt(5))
使用 gradcheck
验证我们反向公式的正确性
weight = torch.rand(5, 3, 3, 3, requires_grad=True, dtype=torch.double)
X = torch.rand(2, 3, 4, 4, requires_grad=True, dtype=torch.double)
torch.autograd.gradcheck(FusedConvBN2DFunction.apply, (X, weight))
测试我们的新层 ¶
使用 FusedConvBN
训练一个基本网络 以下代码是在对以下示例进行了一些轻微修改后得到的:https://github.com/pytorch/examples/tree/master/mnist
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
# Record memory allocated at the end of the forward pass
memory_allocated = [[],[]]
class Net(nn.Module):
def __init__(self, fused=True):
super(Net, self).__init__()
self.fused = fused
if fused:
self.convbn1 = FusedConvBN(1, 32, 3)
self.convbn2 = FusedConvBN(32, 64, 3)
else:
self.conv1 = nn.Conv2d(1, 32, 3, 1, bias=False)
self.bn1 = nn.BatchNorm2d(32, affine=False, track_running_stats=False)
self.conv2 = nn.Conv2d(32, 64, 3, 1, bias=False)
self.bn2 = nn.BatchNorm2d(64, affine=False, track_running_stats=False)
self.fc1 = nn.Linear(9216, 128)
self.dropout = nn.Dropout(0.5)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
if self.fused:
x = self.convbn1(x)
else:
x = self.conv1(x)
x = self.bn1(x)
F.relu_(x)
if self.fused:
x = self.convbn2(x)
else:
x = self.conv2(x)
x = self.bn2(x)
F.relu_(x)
x = F.max_pool2d(x, 2)
F.relu_(x)
x = x.flatten(1)
x = self.fc1(x)
x = self.dropout(x)
F.relu_(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
if fused:
memory_allocated[0].append(torch.cuda.memory_allocated())
else:
memory_allocated[1].append(torch.cuda.memory_allocated())
return output
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 2 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
# Use inference mode instead of no_grad, for free improved test-time performance
with torch.inference_mode():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, reduction='sum').item()
# get the index of the max log-probability
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {'batch_size': 2048}
test_kwargs = {'batch_size': 2048}
if use_cuda:
cuda_kwargs = {'num_workers': 1,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('../data', train=True, download=True,
transform=transform)
dataset2 = datasets.MNIST('../data', train=False,
transform=transform)
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
内存使用比较 ¶
如果启用 CUDA,则打印出 fused=True 和 fused=False 两种情况下的内存使用情况。以 NVIDIA GeForce RTX 3070 为例,NVIDIA CUDA®深度神经网络库(cuDNN)8.0.5:fused 峰值内存:1.56GB,unfused 峰值内存:2.68GB
需要注意的是,该模型的峰值内存使用量可能因所使用的特定 cuDNN 卷积算法而异。对于较浅的模型,fused 模型的峰值内存分配量可能超过 unfused 模型!这是因为为计算某些 cuDNN 卷积算法分配的内存可能足够高,以至于可以“隐藏”通常在反向传播开始附近期望的典型峰值。
因此,我们还记录并显示正向传播结束时的内存分配量作为近似值,并展示我们确实为每个 fused conv-bn
对分配了一个更少的缓冲区。
from statistics import mean
torch.backends.cudnn.enabled = True
if use_cuda:
peak_memory_allocated = []
for fused in (True, False):
torch.manual_seed(123456)
model = Net(fused=fused).to(device)
optimizer = optim.Adadelta(model.parameters(), lr=1.0)
scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
for epoch in range(1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
scheduler.step()
peak_memory_allocated.append(torch.cuda.max_memory_allocated())
torch.cuda.reset_peak_memory_stats()
print("cuDNN version:", torch.backends.cudnn.version())
print()
print("Peak memory allocated:")
print(f"fused: {peak_memory_allocated[0]/1024**3:.2f}GB, unfused: {peak_memory_allocated[1]/1024**3:.2f}GB")
print("Memory allocated at end of forward pass:")
print(f"fused: {mean(memory_allocated[0])/1024**3:.2f}GB, unfused: {mean(memory_allocated[1])/1024**3:.2f}GB")
脚本总运行时间:(0 分钟 0.000 秒)