快捷键

MaxPool3d ¬

class torch.nn.MaxPool3d(核大小, 步长=None, 填充=0, 扩展=1, 返回索引=False, 向上取整模式=False)[源代码][源代码] ¬

对由多个输入平面组成的输入信号应用 3D 最大池化。

在最简单的情况下,输入大小为 (N,C,D,H,W)(N, C, D, H, W) ,输出为 (N,C,Dout,Hout,Wout)(N, C, D_{out}, H_{out}, W_{out})kernel_size(kD,kH,kW)(kD, kH, kW) 的层的输出值可以精确描述为:

out(Ni,Cj,d,h,w)=maxk=0,,kD1maxm=0,,kH1maxn=0,,kW1input(Ni,Cj,stride[0]×d+k,stride[1]×h+m,stride[2]×w+n)\begin{aligned} \text{out}(N_i, C_j, d, h, w) ={} & \max_{k=0, \ldots, kD-1} \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\ & \text{input}(N_i, C_j, \text{stride[0]} \times d + k, \text{stride[1]} \times h + m, \text{stride[2]} \times w + n) \end{aligned}

如果 padding 非零,则输入将在两侧隐式填充负无穷大,填充 padding 个点。 dilation 控制核点之间的间距。描述起来比较困难,但这个链接有一个很好的可视化,展示了 dilation 的作用。

注意

当 ceil_mode=True 时,滑动窗口允许在左填充或输入内开始时超出边界。如果滑动窗口将开始于右填充区域,则忽略。

参数 kernel_sizestridepaddingdilation 可以是:

  • 单个 int – 在这种情况下,深度、高度和宽度维度使用相同的值

  • 三个整数的 tuple – 在这种情况下,第一个整数用于深度维度,第二个整数用于高度维度,第三个整数用于宽度维度

参数:
  • kernel_size (Union[int, tuple[int, int, int]]) – 窗口大小,用于取最大值

  • 步长(Union[int, tuple[int, int, int]])– 窗口的步长。默认值为 kernel_size

  • padding (Union[int, tuple[int, int, int]]) – 在所有三侧添加隐式负无穷大填充

  • dilation (Union[int, tuple[int, int, int]]) – 控制窗口中元素步长的参数

  • return_indices (bool) – 如果 True ,将返回最大索引和输出。对 torch.nn.MaxUnpool3d 有用

  • ceil_mode(布尔值)- 当为 True 时,将使用向上取整而不是向下取整来计算输出形状

形状:
  • 输入: (N,C,Din,Hin,Win)(N, C, D_{in}, H_{in}, W_{in})(C,Din,Hin,Win)(C, D_{in}, H_{in}, W_{in})

  • 输出: (N,C,Dout,Hout,Wout)(N, C, D_{out}, H_{out}, W_{out})(C,Dout,Hout,Wout)(C, D_{out}, H_{out}, W_{out}) ,其中

    Dout=Din+2×padding[0]dilation[0]×(kernel_size[0]1)1stride[0]+1D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] \times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor
    Hout=Hin+2×padding[1]dilation[1]×(kernel_size[1]1)1stride[1]+1H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor
    Wout=Win+2×padding[2]dilation[2]×(kernel_size[2]1)1stride[2]+1W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2] \times (\text{kernel\_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor

示例:

>>> # pool of square window of size=3, stride=2
>>> m = nn.MaxPool3d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.MaxPool3d((3, 2, 2), stride=(2, 1, 2))
>>> input = torch.randn(20, 16, 50, 44, 31)
>>> output = m(input)

© 版权所有 PyTorch 贡献者。

使用 Sphinx 构建,并使用 Read the Docs 提供的主题。

文档

PyTorch 的全面开发者文档

查看文档

教程

深入了解初学者和高级开发者的教程

查看教程

资源

查找开发资源并获得您的疑问解答

查看资源