MPS 后端 ¶
mps
该设备为 MacOS 设备上的 GPU 提供了高性能训练,并使用 Metal 编程框架。它引入了一种新的设备,可以将机器学习计算图和原语映射到 Metal Performance Shaders Graph 框架和 Metal Performance Shaders 框架提供的各自优化的内核上。
新的 MPS 后端扩展了 PyTorch 生态系统,并提供了现有脚本的设置和运行 GPU 上操作的能力。
要开始,只需将您的 Tensor 和 Module 移动到 mps
设备上:
# Check that MPS is available
if not torch.backends.mps.is_available():
if not torch.backends.mps.is_built():
print("MPS not available because the current PyTorch install was not "
"built with MPS enabled.")
else:
print("MPS not available because the current MacOS version is not 12.3+ "
"and/or you do not have an MPS-enabled device on this machine.")
else:
mps_device = torch.device("mps")
# Create a Tensor directly on the mps device
x = torch.ones(5, device=mps_device)
# Or
x = torch.ones(5, device="mps")
# Any operation happens on the GPU
y = x * 2
# Move your model to mps just like any other device
model = YourFavoriteNet()
model.to(mps_device)
# Now every call runs on the GPU
pred = model(x)