torch.func.vmap¶
- torch.func.vmap(func, in_dims=0, out_dims=0, randomness='error', *, chunk_size=None)[source]¶
vmap 是向量化映射;
vmap(func)
返回一个新函数,该函数将func
映射到输入的一些维度上。从语义上讲,vmap 将映射推入由func
调用的 PyTorch 操作中,从而有效地向量化这些操作。vmap 在处理批量维度方面很有用:可以编写一个函数
func
,它在示例上运行,然后将其提升为可以接受示例批次的函数vmap(func)
。vmap 还可以与 autograd 组合来计算批量梯度。注意
torch.vmap()
被别名torch.func.vmap()
,方便使用。您可以选择使用任何一个。- 参数:
func(函数)- 一个 Python 函数,可以接受一个或多个参数。必须返回一个或多个张量。
in_dims(int 或嵌套结构)- 指定应映射输入的哪个维度。
in_dims
的结构应与输入类似。如果特定输入的in_dim
为 None,则表示没有映射维度。默认:0。out_dims (int 或 Tuple[int]) – 指定映射维度应在输出中出现的位置。如果
out_dims
是 Tuple,则它应该包含每个输出的一个元素。默认:0。randomness (str) – 指定此 vmap 中的随机性是否应在批次间相同或不同。如果为 'different',则每个批次的随机性将不同。如果为 'same',则随机性将在批次间相同。如果为 'error',则对随机函数的任何调用将出错。默认:'error'。警告:此标志仅适用于随机 PyTorch 操作,不适用于 Python 的 random 模块或 numpy 随机性。
chunk_size (None 或 int) – 如果为 None(默认),则在输入上应用单个 vmap。如果不为 None,则每次计算 vmap
chunk_size
样本。请注意,chunk_size=1
等同于使用 for-loop 计算的 vmap。如果在计算 vmap 时遇到内存问题,请尝试使用非 None 的 chunk_size。
- 返回值:
返回一个新的“批处理”函数。它接受与
func
相同的输入,除了每个输入都有一个额外的维度在指定的索引in_dims
上。它返回与func
相同的输出,除了每个输出都有一个额外的维度在指定的索引out_dims
上。- 返回类型:
使用
vmap()
的一个例子是计算批量点积。PyTorch 没有提供批量torch.dot
API;与其在文档中徒劳地寻找,不如使用vmap()
来构建一个新的函数。>>> torch.dot # [D], [D] -> [] >>> batched_dot = torch.func.vmap(torch.dot) # [N, D], [N, D] -> [N] >>> x, y = torch.randn(2, 5), torch.randn(2, 5) >>> batched_dot(x, y)
vmap()
可以帮助隐藏批量维度,从而简化模型编写体验。>>> batch_size, feature_size = 3, 5 >>> weights = torch.randn(feature_size, requires_grad=True) >>> >>> def model(feature_vec): >>> # Very simple linear model with activation >>> return feature_vec.dot(weights).relu() >>> >>> examples = torch.randn(batch_size, feature_size) >>> result = torch.vmap(model)(examples)
vmap()
还可以帮助将之前难以或无法批量的计算向量化。一个例子是高阶梯度计算。PyTorch 的自动微分引擎计算 vjp(向量-雅可比积)。对于某些函数 f: R^N -> R^N,计算完整的雅可比矩阵通常需要 N 次调用autograd.grad
,每次调用对应雅可比矩阵的一行。使用vmap()
,我们可以将整个计算向量化,通过一次调用autograd.grad
来计算雅可比矩阵。>>> # Setup >>> N = 5 >>> f = lambda x: x ** 2 >>> x = torch.randn(N, requires_grad=True) >>> y = f(x) >>> I_N = torch.eye(N) >>> >>> # Sequential approach >>> jacobian_rows = [torch.autograd.grad(y, x, v, retain_graph=True)[0] >>> for v in I_N.unbind()] >>> jacobian = torch.stack(jacobian_rows) >>> >>> # vectorized gradient computation >>> def get_vjp(v): >>> return torch.autograd.grad(y, x, v) >>> jacobian = torch.vmap(get_vjp)(I_N)
vmap()
还可以嵌套,产生具有多个批量维度的输出。>>> torch.dot # [D], [D] -> [] >>> batched_dot = torch.vmap(torch.vmap(torch.dot)) # [N1, N0, D], [N1, N0, D] -> [N1, N0] >>> x, y = torch.randn(2, 3, 5), torch.randn(2, 3, 5) >>> batched_dot(x, y) # tensor of size [2, 3]
如果输入没有沿第一个维度批量处理,
in_dims
指定每个输入沿哪个维度进行批量处理>>> torch.dot # [N], [N] -> [] >>> batched_dot = torch.vmap(torch.dot, in_dims=1) # [N, D], [N, D] -> [D] >>> x, y = torch.randn(2, 5), torch.randn(2, 5) >>> batched_dot(x, y) # output is [5] instead of [2] if batched along the 0th dimension
如果有多个输入,每个输入沿不同的维度进行批量处理,
in_dims
必须是一个元组,包含每个输入的批量维度>>> torch.dot # [D], [D] -> [] >>> batched_dot = torch.vmap(torch.dot, in_dims=(0, None)) # [N, D], [D] -> [N] >>> x, y = torch.randn(2, 5), torch.randn(5) >>> batched_dot(x, y) # second arg doesn't have a batch dim because in_dim[1] was None
如果输入是 Python 结构体,
in_dims
必须是一个元组,包含与输入形状匹配的结构体>>> f = lambda dict: torch.dot(dict['x'], dict['y']) >>> x, y = torch.randn(2, 5), torch.randn(5) >>> input = {'x': x, 'y': y} >>> batched_dot = torch.vmap(f, in_dims=({'x': 0, 'y': None},)) >>> batched_dot(input)
默认情况下,输出沿第一个维度进行批量处理。但是,可以通过使用
out_dims
将其沿任何维度进行批量处理>>> f = lambda x: x ** 2 >>> x = torch.randn(2, 5) >>> batched_pow = torch.vmap(f, out_dims=1) >>> batched_pow(x) # [5, 2]
对于任何使用 kwargs 的函数,返回的函数不会对 kwargs 进行批处理,但会接受 kwargs
>>> x = torch.randn([2, 5]) >>> def fn(x, scale=4.): >>> return x * scale >>> >>> batched_pow = torch.vmap(fn) >>> assert torch.allclose(batched_pow(x), x * 4) >>> batched_pow(x, scale=x) # scale is not batched, output has shape [2, 2, 5]
注意
vmap 不提供通用的自动批处理,也不能直接处理变长序列。